APPLICATION FOR MINOR
MODIFICATION TO A DTV BROADCAST
STATION CONSTRUCTION PERMIT
FCC FILE NUMBER: BPCDT-19991029AGW
WPAN-DT CHANNEL 40 ERP 600.0 KW
(MAX-DA) AT 278.4 METERS AAT,
FRANKLIN MEDIA, INC.
FORT WALTON BEACH, FL

ENGINEERING STATEMENT OF RYAN WILHOUR OF THE FIRM KESSLER AND GEHMAN ASSOCIATES, INC., CONSULTING ENGINEERS IN CONNECTION WITH AN APPLICATION FOR MINOR MODIFICATION TO A DTV BROADCAST STATION CONSTRUCTION PERMIT FCC FILE NUMBER BPCDT-19991029AGW LICENSED TO FRANKLIN MEDIA, INC.

WPAN-DT FORT WALTON BEACH, FLORIDA

PROCLAMATION OF ENGINEER

I, Ryan Wilhour, am an associate of Kessler and Gehman Associates, Inc. with offices in Gainesville, Florida. I am a graduate of the University of Florida with a Bachelor of Science degree in electrical engineering.

This firm has been employed by Franklin Media, Inc. (hereinafter referred to as "FMI") to make engineering studies and to prepare a minor modification application to FCC file number BPCDT-19991029AGW. It is herein proposed to move the transmitter site, change the broadcast antenna, increase the ERP, and increase the effective antenna height.

ATTACHED FIGURES

In carrying out the engineering studies the following attached figures were prepared:

- 1. Engineering Specifications (Exhibit E1)
- 2. Elevation drawing of the antenna system (Exhibit E2)
- 3. USGS 7.5 minute topographic quadrangle showing the proposed transmitter location and the coordinate lines (Exhibit E3)
- 4. Antenna elevation, azimuth, and ERP dBk patterns (Exhibit E4)
- 5. Map showing the predicted DTV coverage contour. Tabulation of the predicted contour distances, along with relevant elevations and ERPs (Exhibit E5)
- 6. Allocation Analysis (Exhibit E6)
- 7. Environmental Impact/ RFR Hazard Analysis (Exhibit E7)

TRANSMITTER LOCATION

FMI proposes to operate the DTV facilities of WPAN-DT on an existing tower. The FCC tower registration number is 1242292. It is herein proposed to side mount the antenna as demonstrated in Exhibit E2.

INTERFERENCE ANALYSIS

The applicant accepts full responsibility for the elimination of any objectionable interference including that caused by intermodulation to facilities in existence or authorized prior to the grant of this application.

Evaluation toward Class A Stations

No Spacing violations or contour overlap to Class A stations exist.

Evaluation toward Landmobile Stations

No landmobile spacing violations exist.

FCC Monitoring Stations

The proposed station is compliant with regard to FCC Monitoring Stations.

West Virginia quite zone

The proposed station is compliant with regard to West Virginia quite zone.

Table Mountain

The proposed station is compliant with regard to Table Mountain.

Canadian coordination distance

The proposed facility is within the Canadian coordination distance.

Mexican coordination distance

The proposed facility is beyond the Mexican coordination distance.

AM broadcast stations

The proposed station is compliant with regard to AM broadcast stations.

NTSC and DTV

The following DTV and NTSC stations were analyzed for potential interference:

Chan	Call	City/State	Dist(km)	Status	Application	on Ref. No.
32	WNCF	MONTGOMERY AL	127.2	LIC	BLCT	-20020131ACG
32	WDES-CA	DESTIN FL	69.8	APP	BDISTTA	-20051007ACV
33	WHBR	PENSACOLA FL	98.1	APP	BPCT	-20050214AAX
33	WHBR	PENSACOLA FL	97.6	LIC	BLCT	-20001027ABJ
39	970331LQ	DOTHAN AL	139.3	APP	BPET	-19970331LQ
39	960920KM	DOTHAN AL	139.9	APP	BPET	-19960920KM
39	WLOX-DT	BILOXI MS	228.3	PLN	DTVPLN	-DTVP1095
40	WJSU-TV	ANNISTON AL	291.4	LIC	BLCT	-19971009KE
40	WTWC-TV	TALLAHASSEE FL	264.6	CP MOD	BMPCT	-20050412AAI
40	WTWC-TV	TALLAHASSEE FL	241.5	LIC	BLCT	-19990429KJ
40	WTWC-TV	TALLAHASSEE FL	264.6	APP	BFRCCT	-20050729AHV
40	WIRE-CA	ATLANTA GA	384.0	CP	BPTTA	-20040602AAJ
40	WIRE-CA	ATLANTA GA	385.8	LIC	BLTVL	-19960529JC
40	WMGT-DT	MACON GA	356.2	PLN	DTVPLN	-DTVP1119
40	WNOL-TV	NEW ORLEANS LA	329.2	CP MOD	BMPCDT	-20021107AAV
40	WNOL-DT	NEW ORLEANS LA	328.6	PLN	DTVPLN	-DTVP1126
40	WDBD	JACKSON MS	372.0	LIC	BLCT	-20020429ABE
40	WDBD	JACKSON MS	372.0	CP MOD	BMPCT	-20020429ABF
41	WIIQ	DEMOPOLIS AL	186.5	LIC	BLET	-20040120ACY
41	WEIQ	MOBILE AL	118.0	LIC	BLEDT	-20030430AAX
41	WEIQ-DT	MOBILE AL	118.0	PLN	DTVPLN	-DTVP1149
42	WEIQ	MOBILE AL	118.0	LIC	BLET	-19851216KG
44	WJTC	PENSACOLA FL	91.7	LIC	BLCT	-20030129AKX
48	WFBD	DESTIN FL	71.9	CP	BPCT	-19960405XK
48	WDES-CA	DESTIN FL	69.8	LIC	BLTTL	-19970509JB
48	NEW	DESTIN FL	71.9	LIC	BPRM	-20000717AFP

None of the stations above are predicted to receive greater than 2% unique or 10% cumulative interference from the instant application.

ENVIRONMENTAL IMPACT/RFR HAZARD ANALYSIS

An analysis has been made of the human exposure to RFR using the calculation methodology described in OET Bulletin 65, Edition, 97-01. Exhibit E7 is a RFR study demonstrating compliance within 5% of the most restrictive permissible exposure at any location 2 meters above the ground. Exhibit E7 calculations were made using a frequency of 626 MHz, which is the lower edge of the proposed channel. To account for ground reflections, a coefficient of 1.6 was included in the calculations.

Pursuant to OET Bulletin 65 concerning multiple-user transmitter sites only those licensees whose transmitters produce power density levels greater than 5.0% of the exposure limit are

considered significant contributors to RFR. Since the proposed operation is well with in 5% of the most permissible exposure at any location 2 meters above the ground, it is not considered a significant contributor to RFR exposure. Thus, contributions to exposure from other RF sources in the vicinity of WPAN-DT were not taken into account. The instant proposal complies with the FCC limits for human exposure to RF radiation and thus is excluded from further environmental processing.

A chain link fence shall encompass the WPAN-DT support structure if it is not already. The applicant will cooperate with any other users of the tower by reducing the power to the antenna or if necessary completely cutting it off in order to protect maintenance workers on the tower.

DECLARATION OF ENGINEER

The foregoing statement and the report regarding the aforementioned engineering work are true and correct to the best of my knowledge. Executed on May 9, 2006.

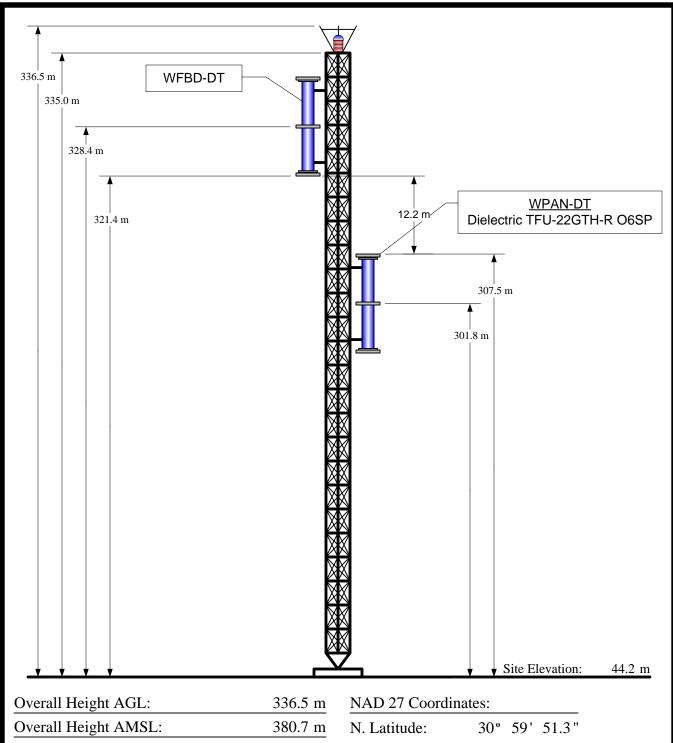
Ryan Wilhour

Consulting Engineer

WPAN-DT

FORT WALTON BEACH, FLORIDA

ENGINEERING SPECIFICATIONS


A.	Transmitter Site (NAD 27)			
		North Latitude	30 °	59 ' 51.3 "
		West Longitude	86°	43 ' 13.2 "
	Street Address or Location	-		
		Cr 37 Bradley		
В.	Proposed Facility			
	DTV Channel			
		Number	40	
		Frequency	626-632	MHz
C.	Elevations			
	Height of Site Above Mean S		44.2	
	Overall Height of Structure A	336.5	m	
	(including all appurtenar			
	Overall Height of Structure A	380.7	m	
	(including all appurtenar			
	Effective Height of Antenna		301.8	
	Effective Height of Antenna	<u> </u>	278.4	
	Effective Height of Antenna	Above Mean Sea Level	346.0	m
D.	Antenna Parameters – Horiz	ontal Polarization		
	Maximum Antenna Gain in 1	Beam Maximum	14.25	dB
	Maximum Antenna Gain in 1	Horizontal Plane	13.94	dB
	Maximum Effective Radiated	l Power	27.78	dBk
	In Beam Maximum		600.0	kW
	Maximum Effective Radiated	l Power	27.47	dBk
	In Horizontal Plane		558.7	kW

TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WPAN-DTFORT WALTON BEACH, FLORIDA

20060509

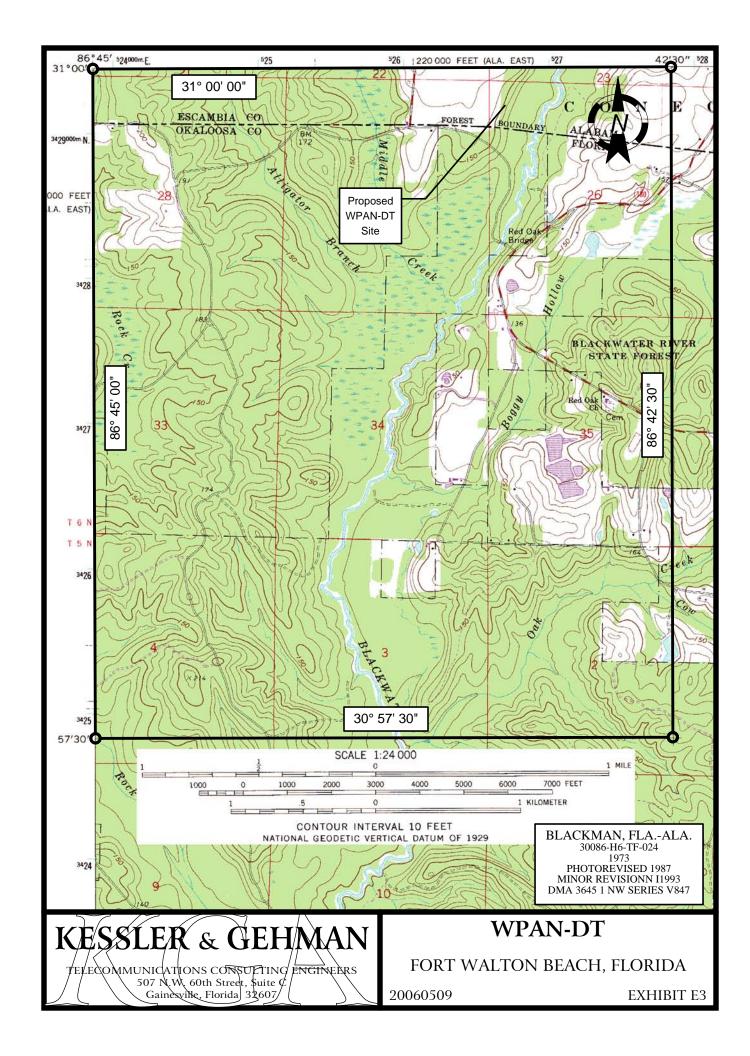
EXHIBIT E1

Overall Height AGL:	336.5 m
Overall Height AMSL:	380.7 m
Radiation Center AGL:	301.8 m
Radiation Center AMSL:	346.0 m
Radiation Center HAAT:	278.4 m
Average Terrain:	67.6 m

86° 43' 13.2" W. Longitude:

FCC Tower Registration Number: 1242292

2003-ASO-5859-OE FAA Aeronautical Study Number:


NOTE: NOT TO SCALE

MMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WPAN-DT

FORT WALTON BEACH, FLORIDA

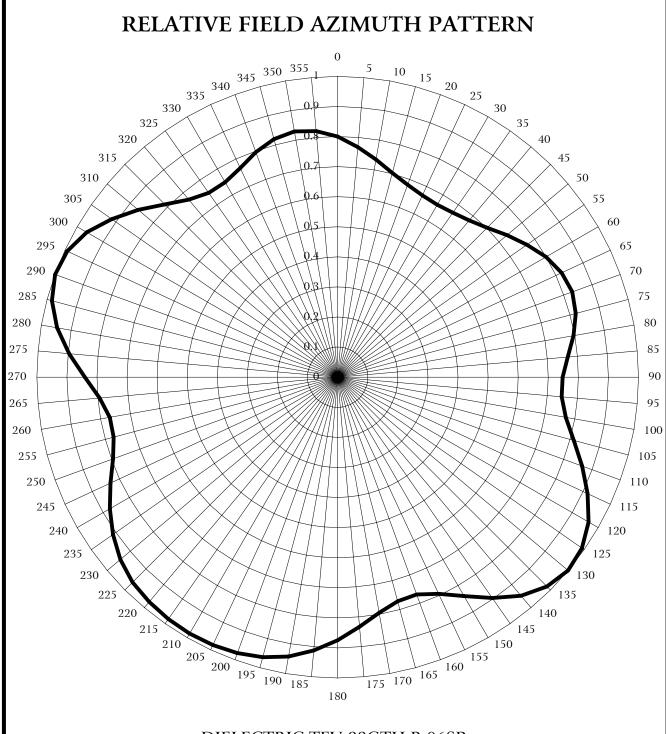
20060509 **EXHIBIT E2**

WPAN-DT

FORT WALTON BEACH, FLORIDA

TABULATION OF RELATIVE FIELD FOR PROPOSED DIRECTIONAL ANTENNA

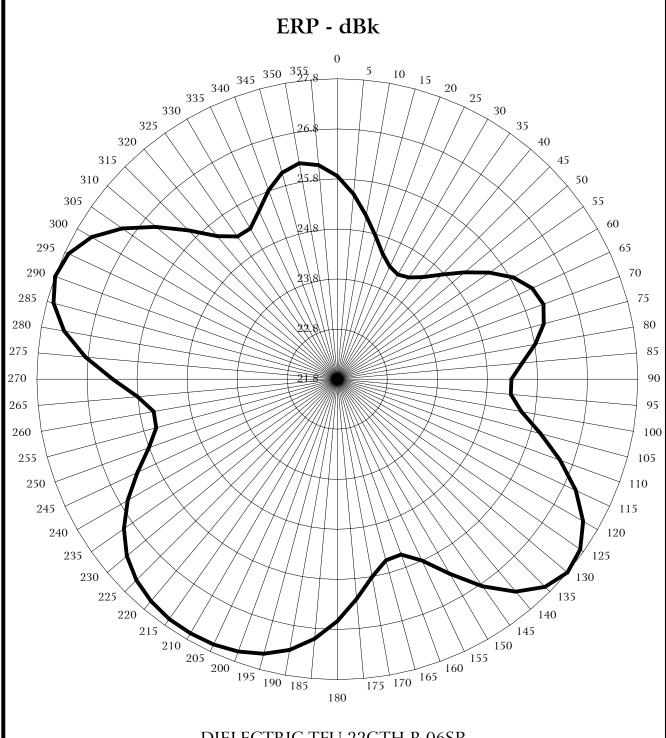
<u>AZIMUTH</u>	RELATIVE FIELD	<u>AZIMUTH</u>	RELATIVE FIELD
N000°E	0.800	N180°E	0.874
N010°E	0.734	N190°E	0.943
N020°E	0.681	N200°E	0.976
N030°E	0.662	N210°E	0.984
N040°E	0.681	N220°E	0.976
N050°E	0.734	N230°E	0.943
N060°E	0.800	N240°E	0.874
N070°E	0.829	N250°E	0.795
N080°E	0.796	N260°E	0.769
N090°E	0.748	N270°E	0.840
N100°E	0.770	N280°E	0.948
N110°E	0.865	N290°E	1.000
N120°E	0.962	N300°E	0.962
N130°E	1.000	N310°E	0.865
N140°E	0.948	N320°E	0.770
N150°E	0.840	N330°E	0.748
N160°E	0.769	N340°E	0.796
N170°E	0.795	N350°E	0.829


DIELECTRIC TFU-22GTH-R O6SP

Gainewille Florida 39607

WPAN-DTFORT WALTON BEACH, FLORIDA

20060509 EXHIBIT E4A



DIELECTRIC TFU-22GTH-R 06SP ORIENTED WITH BEAM MAXIMA AT 290° AND 130° AZIMUTH GAIN: 1.4 (1.46 dB)

KESSLER & GEHMAN
TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WPAN-DTFORT WALTON BEACH, FLORIDA

20060509 EXHIBIT E4B

DIELECTRIC TFU-22GTH-R 06SP ORIENTED WITH BEAM MAXIMA AT 290° AND 130° MAXIMUM ERP: 27.78 DBK

KESSLER & GEHMAN

TELECOMMUNICATIONS CONSULTING ENGINEERS 507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WPAN-DTFORT WALTON BEACH, FLORIDA

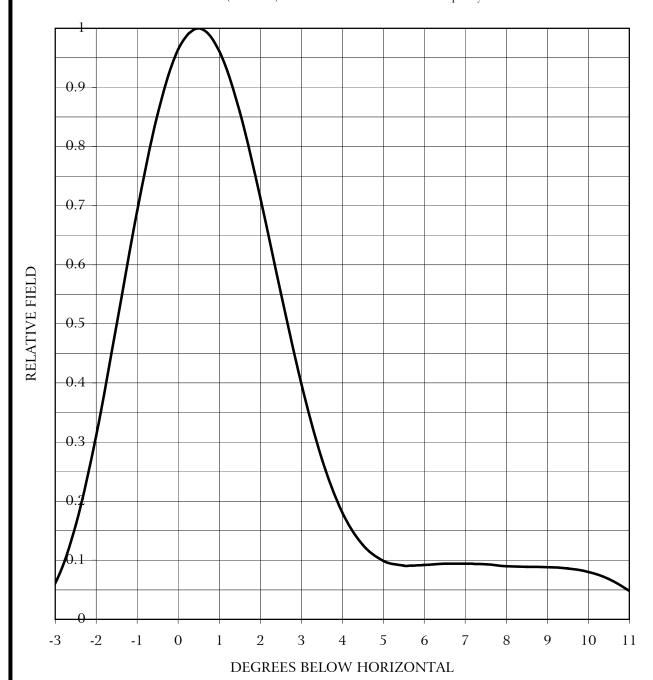

20060509

EXHIBIT E4C

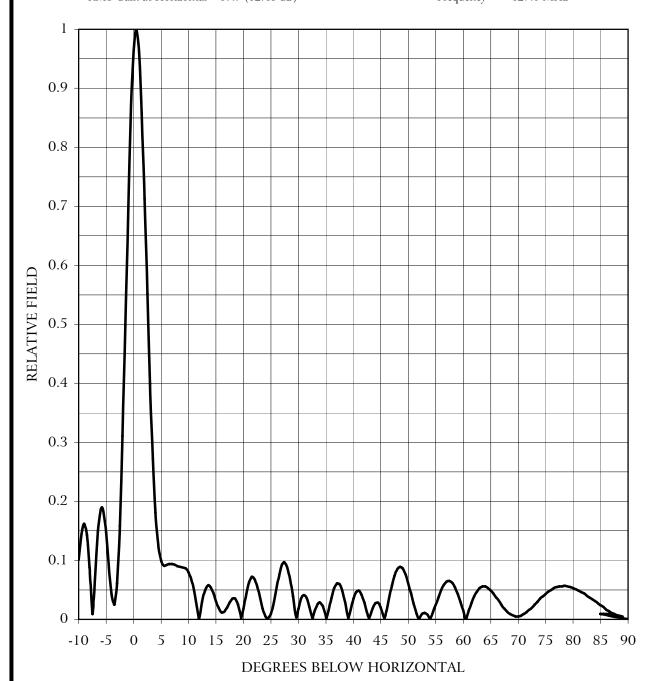
ELEVATION PATTERN

DIELECTRIC TFU-22GTH-R O6SP

RMS Gain at Main Lobe 19.0 (12.79 dB) RMS Gain at Horizontal 17.7 (12.48 dB) Beam Tilt 0.5 deg Frequency 629.0 MHz

KESSLER & GEHMAN
TELECOMMUNICATIONS CONSULTING ENCINEERS
507 N.W. 60th Street, Suite 0

507 N.W. 60th Street, Suite


WPAN-DTFORT WALTON BEACH, FLORIDA

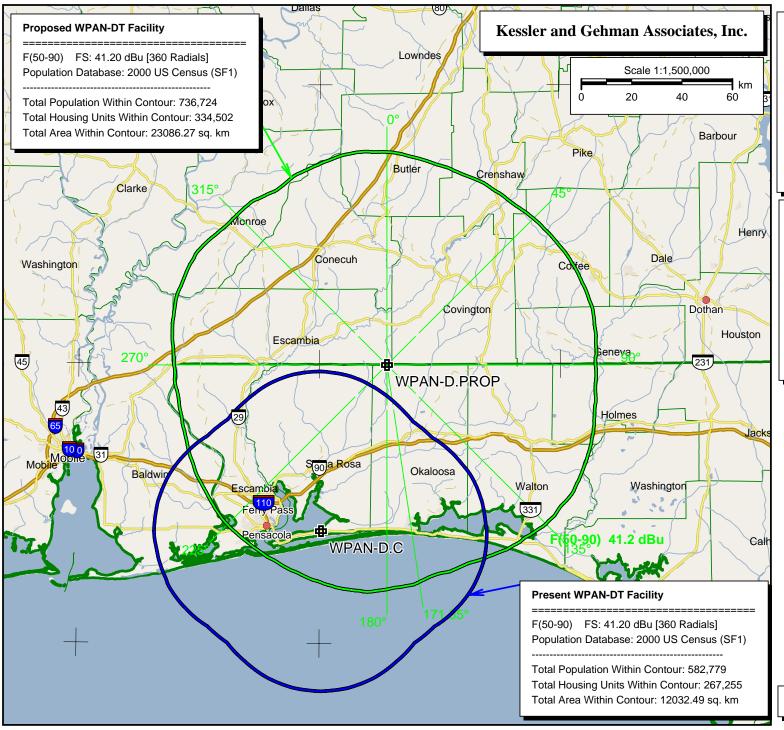
20060509 EXHIBIT E4D

ELEVATION PATTERN

DIELECTRIC TFU-22GTH-R O6SP

RMS Gain at Main Lobe 19.0 (12.79 dB) RMS Gain at Horizontal 17.7 (12.48 dB) Beam Tilt Frequency 0.5 deg 629.0 MHz

KESSLER & GEHMAN


TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WPAN-DT

FORT WALTON BEACH, FLORIDA

20060509

EXHIBIT E4E

WPAN-D.PROP

DIE-06SP @ 210 Deg Latitude: 30-59-51.30 N Longitude: 086-43-13.20 W

ERP: 600.00 kW Channel: 40

AMSL Height: 346.0 m Horiz. Pattern: Directional

Vert. Pattern: Yes Elec Tilt: 0.0 Prop Model: None

WPAN-D.C

BPCDT19991029AGW Latitude: 30-24-09 N Longitude: 086-59-35 W ERP: 33.50 kW

Channel: 40

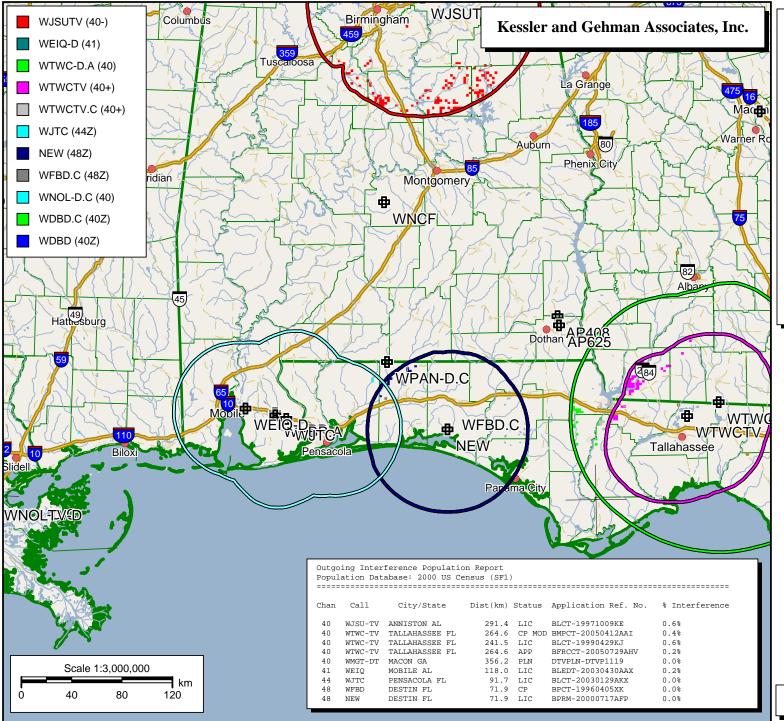
AMSL Height: 222.0 m Horiz. Pattern: Directional Vert. Pattern: Yes

Elec Tilt: 0.75 Prop Model: None

Exhibit E5A

WPAN-DT

<u>DISTANCES TO THE PREDICTED 41.2 DBU CONTOUR, HAAT ELEVATIONS, AND ERP</u>


		DISTANCE				DISTANCE	
		TO 41.29 DBU				TO 41.2 DBU	
	ERP	CONTOUR	HAAT		ERP	CONTOUR	HAAT
AZIMUTH	(KW)	(KM)	(M)	AZIMUTH	(KW)	(KM)	(M)
N000°E	383.7	84.5	275.1	N180°E	458.3	89.1	297.4
N005°E	353.9	83.6	273.4	N185°E	499.0	90.4	302.2
N010°E	323.3	82.7	271.6	N190°E	533.0	90.5	297.9
N015°E	297.1	82.0	270.8	N195°E	556.8	90.4	294.5
N020°E	277.8	81.6	271.5	N200°E	571.5	90.2	291.3
N025°E	266.7	81.6	274.4	N205°E	578.6	89.9	288.5
N030°E	262.8	81.6	274.7	N210°E	580.7	89.5	285.3
N035°E	266.7	81.4	272.6	N215°E	578.6	89.6	285.8
N040°E	277.8	81.5	271.2	N220°E	571.5	89.6	286.6
N045°E	297.1	82.2	273.0	N225°E	556.8	89.5	288.0
N050°E	323.3	82.7	271.9	N230°E	533.0	88.9	286.4
N055°E	353.9	83.2	270.2	N235°E	499.0	87.7	282.0
N060°E	383.7	83.9	270.4	N240°E	458.3	87.2	283.7
N065°E	405.2	84.1	268.9	N245°E	415.8	86.1	281.8
N070°E	412.6	84.4	269.8	N250°E	379.0	84.9	278.5
N075°E	402.5	84.6	273.0	N255°E	356.9	84.2	277.0
N080°E	379.7	83.8	270.7	N260°E	355.1	83.8	274.6
N085°E	353.5	83.3	270.9	N265°E	378.5	84.4	275.1
N090°E	335.3	82.8	270.3	N270°E	423.4	84.5	269.5
N095°E	335.4	83.1	272.5	N275°E	481.6	85.2	266.3
N100°E	355.8	84.2	277.0	N280°E	539.3	86.4	268.5
N105°E	395.9	85.1	277.7	N285°E	581.5	87.2	269.2
N110°E	448.4	86.5	280.0	N290°E	600.0	87.7	270.8
N115°E	504.9	87.6	280.9	N295°E	589.5	87.7	272.0
N120°E	555.6	88.6	281.5	N300°E	555.6	87.8	275.8
N125°E	589.5	89.5	284.1	N305°E	504.9	86.3	271.8
N130°E	600.0	89.0	279.5	N310°E	448.4	84.6	266.9
N135°E	581.5	89.2	283.1	N315°E	395.9	84.2	270.9
N140°E	539.3	88.2	280.4	N320°E	355.8	84.1	276.9
N145°E	481.6	87.4	282.4	N325°E	335.4	82.7	269.6
N150°E	423.4	86.4	283.1	N330°E	335.3	82.4	267.0
N155°E	378.5	85.6	284.2	N335°E	353.4	83.7	273.8
N160°E	355.1	85.3	285.3	N340°E	379.7	83.9	271.6
N165°E	356.9	85.4	285.9	N345°E	402.5	84.5	272.4
N170°E	379.0	86.4	289.8	N350°E	412.6	85.1	275.1
N175°E	415.8	88.0	295.8	N355°E	405.2	85.0	275.4

TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

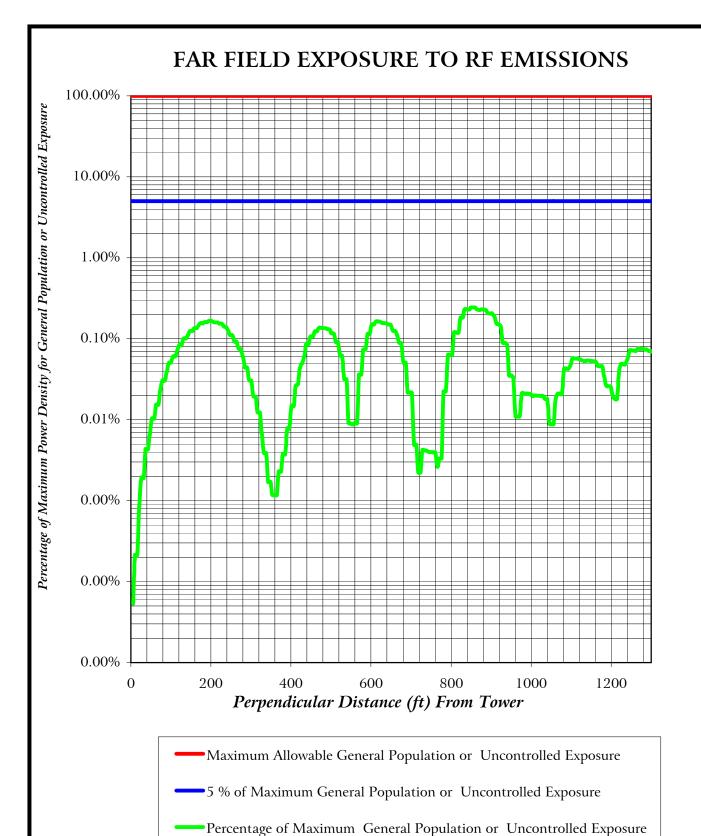
WPAN-DTFORT WALTON BEACH, FLORIDA

20060509

EXHIBIT E5B

WPAN-D.C

DIE-O6SP @ 210 Deg Latitude: 30-59-51.30 N Longitude: 086-43-13.20 W


ERP: 600.00 kW Channel: 40

AMSL Height: 346.0 m Horiz. Pattern: Directional Vert. Pattern: Yes

Elec Tilt: 0.0

Prop Model: Longley/Rice Climate: Cont temperate Conductivity: 0.0050 Dielec Const: 15.0 Refractivity: 301.0 Receiver Ht AG: 10.0 m Receiver Gain: 0 dB Time Variability: 10.0% Sit. Variability: 50.0% ITM Mode: Broadcast

Exhibit E6

KESSLER & GEHMAN

TELECOMMUNICATIONS CONSULTING ENGINEERS
507 N.W. 60th Street, Suite C
Gainesville, Florida 32607

WPAN-DTFORT WALTON BEACH, FLORIDA

EXHIBIT E7

METHODOLOGY AND EXPLANATION OF ENVIRONMENTAL IMPACT / RADIO FREQUENCY RADIATION HAZARD ANALYSIS

A theoretical analysis has been conducted of the human exposure to radio frequency radiation ("RFR") using the calculation methodology described in *OET Bulletin 65*, *Edition 97-01*. The RFR analysis is conducted pursuant to the following methodology:

Terrain¹ extraction is compiled from the proposed tower site to radial lengths of 0.25 miles in 0.001 mile increments for 360 radials. The power density is calculated for each terrain point at 6 feet above ground level using the elevation and azimuth pattern of the proposed broadcast antenna. The power density calculations are conducted using the lower edge of the proposed channel frequency. To account for ground reflections, a coefficient of 1.6 was included in the calculation.

The resulting cylindrical polar analysis is then summarized into a coordinate plane graph using the following methodology:

Starting from the origin the maximum calculated RFR value is determined among the 360 degree radials for each 0.001 mile increment, the value is then converted into a percentage of the maximum allowable general population or uncontrolled exposure and plotted as a function of perpendicular distance from the tower.

_

¹ Terrain extraction is based upon a 3 arc second point spacing terrain database.